
Fermi National Accelerator Laboratory

F-nf-92’2f30

Software for Parallel Processing Applications

Stephen Wolbers

Fermi National Accelerator Laboratory
P.O. Box 500, Batauia, Illinois 60510

October 1992

Presented at the Computing in High Energy Physics Conference,
Annecy, France, September 21-25, 1992

Operated by Universities Research Association Inc. under Contract No. DE-ACXZ-76CHOSOX tifi the United States DeparWant of Energy

This report was prepared as an account of work sponsored by an agency of the United States
Gouernment. Neither the United States Government nor any agency thereof nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, OP service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any
agency thereof, The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof:

Software for Parallel Processing Applications

Stephen Wolbers

Fermilab, Batavia IL 60510 USA

Parallel computing has been used to solve large computing problems in high-energy
physics. Typical problems include offline event reconstruction, monte car10 event-
generation and reconstruction, and lattice QCD calculations. Fermilab has extensive
experience in parallel computing using CPS (cooperative processes software) and
networked UNIX workstations for the loosely-coupled problems of event reconstruc-
tion and monte car10 generation and CANOPY and ACPMAPS for Lattice QCD.
Both systems will be discussed. Parallel software has been developed by many other
groups, both commercial and research-oriented. Examples include PVM, Express
and network-Linda for workstation clusters and PCN and STRAND88 for mm
tightly-coupled machines.

1. Introduction

Computing problems in high-energy physics (HEP) and other scientific fields are
often too large for standard conventional serial computing techniques. In addition,
there are problems whose solution is not even attempted because of the large computing
requirements involved. Parallel computing is a technique that can be used to provide
cost-effective computing solutions to these large problems. This paper will motivate
the need for parallel computing, describe the software and hardware used by Fermilab
to provide such computing, review briefly other software packages available and finally
discuss some possible future directions for this approach.

2. Motivation for Parallel Computing
Problems in HEP are quite large. Offline computing needs for a single run of an

experiment typically range from 50 VUP-years (where VUP = one Vax 780 equivalent
of performance) to 5,000 VUP-years or more. The typical experiment needs a few hun-
dred VUP-years. These requirements are so large that standard mainframe techniques
cannot be used in all cases to provide the computing solution within time and budget
constraints. This problem has been recognized for many years as a problem that can be
solved with parallel processing techniques [l]. The individual events are independent
of each other and therefore can be passed out to individual processes, each of which
runs a copy of the full reconstruction program. This is the standard farm approach
to parallel computing. This technique has been pioneered at Fermilab with the ACP
project and continues with CPS and UNIX farms.

A second HEP problem that requires large computing resources is Lattice QCD.
A parallel computing solution is appropriate in this case because the problem requires
the largest computing power available and is naturally parallel because of its grid-like
nature. The software CANOPY [2] and the hardware ACPMAPS [3] at Fermilab have
been used to provide parallel computing solutions to Lattice QCD calculations.

Other problems in HEP and science can certainly benefit from parallel computing
for solutions. It is also the case that many problems previously thought impossible
can be attempted once the computing is made available cheaply and conveniently. The
increased computing has the effect of enabling new and better physics. For example
experiments can benefit from larger monte carlo datasets (still a limitation in many
physics results) as well as more detailed detector simulations. Having additional com-
puting allows experiments to collect additional data and reconstruct it fully. Any other
compute-intensive problems in HEP can benefit by having additional computing, in-
cluding accelerator physics problems, theoretical calculations, data analysis of large

datasets, etc. It is clear that cost-effective parallel computing can have an impact on
many areas of HEP.

3. CPS and CPS-BATCH
A software and hardware solution to the loosely-coupled computing problem of

the offline reconstruction of HEP events are the packages CPS[4] and CPS-BATCH
running on dedicated UNIX workstations (the Fermilab Farms). CPS is a package of
software tools that allows a computational task to be distributed among many pro-
cesses distributed on many processors. CPS itself does not in general limit the way
a problem is split up to take advantage of parallel computing. CPS provides several
sets of tools including remote subroutine calls, process synchronization and queueing,
message oassine and bulk data transfers. CPS is written in ANSI C and uses TCP/TP
as its co&mu&cation protocol, allowing it to run on many flavors of UNIX including
IRIX, AIX, ULTRIX, etc.

A typical offline HEP code run on the Farms has the following characteristics.
The events are read from serial media (8mm tape), the event is reconstructed using a
large and complicated HEP code written in fortran and the results of the reconstruction
are written out to serial media for further processing and analysis elsewhere. Mapping
this to CPS is done by splitting the program into 3 pieces (‘classes’ in CPS language).
The first class reads the input tape and sends them to the second class. The reconstruc-
tion is performed in one of many copies of this class of processes and then sends the
reconstructed events to the third class of process. An average job will have one class 1
process, 8-30 class 2 processes and 1 class 3 process. This 3 class structure is natural
for HEP offline reconstruction. It should be emphasized that the 3 class structure is
not required by CPS, and the number of processes within each class is easily changed
without code changes. Many other topologies are possible and CPS does not restrict
the user from creative solutions to particular problems.

CPSBATCH is a software toolkit to provide a batch system for multiple user and
multiple processor systems. CPS itself does not restrict the topology of an individual job
-it is quite easy to start up processes anywhere on the network where an account exists.
The CPS-BATCH software provides allocation of resources (nodes, tapedrives, etc.),
queueing of jobs, basic monitoring tools, tape-mounting software, user and manager
control, and other features necessary for a large multi-user production environment.
Though this aspect of parallel computing is often ignored, it is a very large part of
the overall effort in providing a production environment. CPS-BATCH uses a resource
manager called the Production Manager (PM).

4. CPS and CPS-BATCH on the Fermilab UNIX Farms

A. Hardware
CPS and CPS-BATCH have been in use for production 7 day/week, 24 hours

per day) at Fermilab since early 1991. The UNIX Farms at $
proximately 100 Silicon Graphics (SGI)

ermilab consist of ap-
workstations (models 4D/25 and 4D/35) and

approximately 100 IBM RS6000 workstations (models 320 and 320H) used a8 worker
nodes. Each node contains a local disk for system and paging and swapping and is
equipped with an adequate amount of memory (typically 16 MeG). The Farms will
be augmented with 80 additional SGI workstations (IRIS Indigo) and 44 IBM work-
stations (model 220
approximately 5000 1,

within a few months. The total computing power available is
UPS (soon to be 8500 VUPS). The CPU power of each machine

is measured using a suite of HEP codes.
In addition to the worker nodes mentioned above a separate set of machines (I/O

nodes) have been acquired to provide the connectivity to tape and disk. There are 6
IBM RS6000’s (models 320 and 530) and 3 SGI (Z-processor model 4D/420) for this
purpose. Tape and disk are SCSI connected to these nodes. There are a total of 70
8mm tapedrives and 60 GBytes of disk storage spread across all the systems. Ethernet
is used to connect the machines and the farms are subnetted with approximately 15
worker nodes and 1 I/O node per each subnet. This is a subfarm. Between 3 and 6

8mm tapedrives and 2-8 GBytes of disk are attached to each such subsystem. NFS is
used to provide access to the disk across the entire subsystem.

B. Users and Production Systems
Many experiments at Fermilab either have run or are running jobs on the UNIX

Farms. They are E665, E687, E706, E731, E760, E771, E789, E791, DO and CDF.
To allocate computing on the farms requires that the farm be divided into production
systems. Each production system runs on a subfarm and has at least two processes on
an IO node (for tape reading and writing) and one or two processes allowed per worker
nodes up to the number of worker nodes on the subfarm. Production systems are used
by CPS-BATCH when jobs are started to place processes on the proper hardware for
the production system. This allows allocation of tapedrives, CPU, disk-space etc. to
match the needs of the physics program and the needs of each user group. A group in
full production runs on 3 or 4 production systems simultaneously.

The 10 groups that have converted their code to CPS have all been able to make
the conversion easily. The modifications to a user code are fairly small and are usually
accomplished in a matter of weeks including testing and debugging). CPS itself has
had certain features modified to satis y the varying needs of performance for some of the I
users. CPS-BATCH has been the major weakness in the overall system performance for
the users. A great deal of effort has gone into making the batch system more robust and
making it easier to recover from the multiple failures inherent in this type of distributed
hardware. As part of the overall performance users have been encouraged to checkpoint
long jobs at intervals of approximately 1 hour so that failures only cause 1 hour of lost
computation.

The ratio of CPU to I/O is a very important consideration in any parallel pro-
cessing application. The more CPU intensive a job is (per I/O transfer) the easier it
is to gain increased computing in a parallel system. An ideal situation is one in which
each processor is busy 100% of the time doing computing (efficiency) and adding nodes
adds exactly that node’s computing power to the problem (speedup). HEP offline re-
construction ha8 been measured to require between 500 and 2000 instructions/byte of
data. The UNIX workstations used in the Farms each are rated at about 30 VUPS.
The ethernet network can transfer data at up to 1 MByte/set (theoretically). Each
HEP event ranges in size from 2-3 KByte to 500 KByte. Additionally CPU is required
to read and write and reformat data 8s well as to send it across the network.

In general it is not easy to predict exactly how well a CPS job will do in utilizing
the resources of its production system. All of the above factors influence the total
throughput. We have relied on empirical determinations to allocate production systems
to user8. In the best cases (Monte Carlo or &line codes transferring very lar e blocks of
data) the speedup is linear up to > 15 nodes and the efficiency is above 90 0. We have J
not made extensive measurements above 15 nodes to find out where the speedup would
start falling below a linear increase with nodes. We have measured, using a special
CPS test job, the throughput versus number of nodes 88 a function of the size of the
typical data transfer. Two conclusions can be drawn from that study. First, CPS can
saturate an ethernet segment and second, larger data transfers tend to provide better
overall throughput.

The total amount of computing time used by experimental groups to do their
event reconstruction has been steadily increasing as we add nodes to the farms and
8s we improve the CPS software and work on the overall robustness of the systems.
Approximately 1000 VUP-months has been delivered to user applications in a month
during the best months up to now. Much of the overall inefficiency has been driven
by scheduling and physics reasons and not by CPS or CPSBATCH failures. Three
experiment8 have completed their reconstruction efforts on the farms and one of them
(E760) reconstructed over 1 billion events using only a small fraction of the farms (very
efficiently). CDF is able to keep up with the maximum data-taking rate in the 1992
data run on the Farms.

C. Management and Administration TOOIS
Many tools have been developed along with CPS and CPS-BATCH as well as

standalone UNIX tools to help us understand how to run a large parallel computing
system. An X-window based operating console ha8 been developed to provide tape-
mounting capability for CPS and CPS-BATCH applications. Other systems at Fermilab
have found the interface to be so attractive that other non-Farm systems are also using
or will be using the same system. Approximately 100 Smm tape mounts per day
are handled by the operator console. CPS and CPSBATCH have many utilities for
monitoring and configure the systems. Most of these tools are being ported to X-
windows to provide a uniform easy-to-use interface. Many UNIX system-management
tools have been developed to make the system administration of 200 nodes easier to
handle. Standalone programs to provide accounting of CPU-use, real-time monitoring
of CPU use and other system attributes have also been developed. Many more tools
are being developed to make the management and control of this large system possible.
Standard UNIX tools are not sufficient for handling large clusters such as the Farms.

5. CANOPY and ACPMAPS at Fermilab
CANOPY and ACPMAPS are described in a separate contribution to this con-

ference 151. CANOPY and ACPMAPS were developed to solve a class of computation
problems that include Lattice QCD (grid-oriented problems). CANOPY deals directly
with grids, sites on the grids, field data associated with the sites, and tasks to be done
for some set of sites on a grid. The software deals only with the abstractions listed
above and not with detail8 of how the data and work are distributed or how to get field
data from remote nodes. The CANOPY program can be run on arbitrary numbers of
processor nodes and can be moved to any system supporting the software.

ACPMAPS is a MIMD computer consisting of INTEL i860 processors (formerly
Weitek 8032) connected via a backbone of croSSbar switching crates. The design of the
system optimizes communication for small data transfers to allow maximum use of the
CPU available for the problem. The peak speed of the system is 50 GFLOPS. The
system has been in production for many users (30-40) doing Lattice QCD calculations
of heavy-light quark systems and charmonium states.

CANOPY and ACPMAPS also have associated software for scheduling, account-
ing and management. Though the nature of the user community and the problems to
be solved are both quite different from the Farms it is still a challenge to provide the
computing capability on a 24 hour/day 7 day/week basis so that the physics can be
done.

6. Other parallel software packages
There are a large number of parallel programming techniques that try to take

advantage of various hardware and software packages. Many of them involve more
traditional approaches (such a8 vector computing) and will not be discussed here. The
two types of techniques I will discuss are those concerned with the loosely-coupled
workstation model and the grid-oriented tightly-coupled model. Many other approaches
are covered in this conference and wiM not be repeated here.

A. Loosely-coupled computing
It has been mentioned that there are at least 100 software pacbges available for

doing loosely-coupled parallel computing on clusters of UNIX workstations. Each pack-
age has involved substantial programming and system effort to produce and support.
Most of these packages are documented poorly if at all, are supported to varying degrees
and are to a large extent research efforts. The goal of many of these approaches is that of
scavenging idle workstation cycles that would normally go unused. Due to the nature of
the support and goals the packages are not always suitable for large production-oriented
computing that require some amount of stable and available computing.

Three of the most commonly-mentioned packages are PVM [6] (and HeNCE),
Express [7] and Linda [S]. PVM is a message-passing toolkit that allows users to run

code on a heterogenous collection of networked computers. It was developed jointly
at Emory University, the University of Tennessee and Oak Ridge National Laboratory.
The program is available free of charge over the network and is used by many users to
run scientific code. The user is responsible for structuring the program in order to run
it as a parallel program in PVM. HeNCE is an X-window based software environment
built to assist users to port code to a parallel computing system using PVM. PVM
does not contain a batch system as part of its tools. PVM contains graphical tools for
examining performance and analyzing jobs. PVM is a research project with fairly large
support at present though future support is not a given.

Express is another message-passing toolkit though the emphasis is slightly differ-
ent. PVM and CPS both emphasize coarse-grain parallelism (subroutine level) while
Express tends to emphasize more fine-grained (DO LOOP) parallelism. Many tools
are available to utilize the features of Express. Debugging tools, graphical monitoring
tools, and profiling tools all exist. An interesting tool within Express is ASPAR, an
automatic parallelizer for FORTRAN. Express is a commercial package.

Linda (and network-Linda) uses a slightly different paradigm than the other pack-
ages. Linda allows message passing via a concept called tuples. Processes can read and
write tuples in such a way that data is processed by whatever process matches the
tuple template. This paradigm has advantages such as natural load-balancing since the
tuples are processed by whatever processors are free and match the tuple. Linda also
has debugging and graphical tools for analyzing jobs. Linda is a commercial package.

All of the packages could be used for HEP applications - there is nothing terribly
special about HEP code except that it is very large and not terribly well structured or
consistent. Express’ automatic parallelizer would probably not do too well with HEP
code. The major questions that a user should have before using these packages are
what level of support (bug fixes, performance enhancements, debugging, etc.) can be
expected, the amount of effort needed to port and maintain code in the new environ-
ment, and the ability of the package to support a full batch production system. None of
the packages available is able to provide all the functionality needed for full production.

B. Tightly-coupled computing
Grid-oriented parallel computing is a very popular area of study and research

in computer science. Massively-parallel computin is a very promising technique for
producing the next generation of supercomputers Teragop machines). Taking advan- f
tage of all that CPU power requires new ideas and new software. Besides CANOPY
other packages are PCN [9] and STRAND [lo]. Th ‘d e I ea in all of these packages is to
structure the program in such a way that the parallelism can be implemented naturally.
PCN is a package developed by Argonne National Labs and Caltech and supported by
them. It is a research project to better understand parallel computing on a masaively-
parallel computing system the INTEL DELTA)

6
and to rovide computing to scientific

grid-oriented problems (sue as global climate modeling . Many tools have been devel- P
oped including a graphical profiling tool called UPSHOT. STRAND is a very similar
package.

All of these packages are designed with the goal in mind of allowing the software to
express the scientific computing problem in parallel terms independent of the hardware
upon which the program will run. The hope is that by making such a separation code
can be ported to many platforms so that the advances in computing due to faster
machines can be exploited without extensive recoding.

7. Conclusions and Futures
Parallel programming has been a solution to many large computing problems.

Software packages have been written to try to simplify the work needed to take ad-
vantage of parallel processing, both in the loosely-coupled csze allowing exploitation
of cheap UNIX workstations and in the high-performance tightly-coupled computing
problem of exploiting massively-parallel computers. Fermilab has successfully provided

solutions to both sets of problems with CPS and CANOPY. Production parallel com-
puting is a fact of life at Fermilab.

The situation is certainly not ideal. The plethora of packages and ideas indi-
cates that the solutions invented and available are not adequate for everyone (maybe
anyone). Ease of programming, debugging, monitoring, administration, allocation, re-
source management, load leveling, etc. are all in need of improvement. Porting code to
parallel systems is never easy. Possible solutions may involve some synthesis of current
ideas and packages into standardized tools or parallelizing compilers or some combina-
tion of these ideas. Tools such as HeNCE are promising in that they allow the casual
user to compose parallel programs without learning how to insert parallel directives
into the code by hand. Other approaches of a similar power would be very helpful and
welcome.

More powerful tools for utilizing parallel processing can only improve the produc-
tivity of the people using computing to solve problems. The rapid advances in micro-
processors promise further increases in computing power at falling prices. Hopefully
communications will also see rapid gains. The future looks good for parallel computing
in HEP.

Acknowledgments
I wish to acknowledge the work of the Fermilab Groups responsible for the success

of the UNIX Farms: Matt Fausey, Bill Meyer, David Potter, Frank Rinaldo, Marilyn
Schweitzer, Roberto Ullfig and Robert Yeager of the Farms Systems Group and Lisa
Amedeo, David Fagan, Marc Mengel, David Oyler and Matt Wicks of the UNIX Sys-

tems Support Group. Many valuable contributions have come from Joel Butler Chuck
DeBaun, Brian Troemel, Paul Lebrun, Jim Meadows, Al Thomas, Mark Leininger,
Frank Nagy, Eric Wicklund, Peter Cooper, Mike Diesburg and Tom Nash. I also wish
to thank Al Geist of Oak Ridge National Labs and Ian Foster of Argonne National Labs
for valuable diBCUBBiOnB about PVM and PCN and parallel programming in general.

References
[l] T. Nash, Comp. Phys. Comm. 57 (1989) 47.
[Z] Details of CANOPY can be found in the CANOPY 5.0 Manual, M. Fischler, G.
Hackney, P. Mackenzie.
[3] M. Fischler, “The ACPMAPS System - A Detailed Overview”, FERMILAB-TM-
1780, 1992.
[4] M. Fausey, “CPS and the Fermilab Farms”, FERMILAB-Conf-92/163, 1992.
[5] M. Fischler, “ Experience8 with the ACPMAPS 50 GFLOP System”, in these pro-
ceedings.
[6] Al Geist, et.&, “A User’s Guide to PVM Parallel Virtual Machine”, Oak Ridge
National Laboratory/TM-11826, July, 1991.
[7] Express, Parasoft Corp., 2500 East Foothill Blvd., Pasadena, CA 91107.
[B] David Gelernter, et.& “Adventures with Network Linda”, Supercomputing Review,
October, 1990.
[9] Ian Foster and Steven Tuecke, “Parallel Programming with PCN”, Argonne National
Laboratory ANL-91/32, December, 1991
[lo] Ian Foster and Stephen Taylor, Strand - New Concepts in Parallel Programming,
Prentice-Hall, 1990.

